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18.1 Phase gradient versus Magnitude gradient

Wave-functions are constructed from complex amplitudes with both a
phase ¢ and an absolute amplitude a. Both components play different
roles which we want to study in more detail. We want to separate certain
quantities into phase related and magnitude related components. Impor-
tant in this respect will be the Gordon decomposition which separates the
vector current in a charge and a spin related component.

In this section we use a more elementary approach using the Klein Gordon
equation. Each component of the Dirac/Weyl spinor obeys separately also
the Klein Gordon equation. To show this first we start of with the Dirac

equation.
i(;)u (’()u>8u(zi;>:m($;> (18.1)

We now square the operator on the left hand side. In the first order
equation the 1y and g chiral components are each the source of the
other coupled via the constant m. Applying the operator twice couples 91,
and ¥g back into an expression where they each are their own source.

((a D)) ()= () e

The result is that 17, and g are given by independent equations. From
the commutation rules of the Pauli matrices we derive.

0 o 0 o" - I ifp=v
<5“ 0)(&” 0) - {0 if p=#£v (18.3)
Which shows that all four components obey the Klein Gordon equation.
Oy I=-m*)I (18.4)
This makes if physically meaningful to study the relating between the phase

gradient ¢, and the gradient of the absolute amplitude a in the context of
the simpler Klein Gordon equation first.
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We can describe wave-function around an arbitrary point which we choose
as the origin of a coordinate system z* as an exponential with phase change
rate ¢, and absolute amplitude change rate a*. where ¢, and a* are four-
vector functions depending on z*.

p = elawtion)" (18.5)

The Klein Gordon equation becomes.

(0,0" +m? ) elations" _ g (18.6)

We evaluate this and then set z#* = 0 because we are interested in this
particular point only. This gives us the following expression.

(a#af‘ — Gud" + 2 aud” — 20 O (a, +idy) ) Y =0 (18.7)

We can spit this expression into two independent equations, one for the
real and one for the imaginary part.

Put —m? = auat +2 duat real part (18.8)
Ouot = —auot imaginary part '
If a* = 0 then this simplifies to the following two equations.
PuPt — m? = 0 Momentum space Klein Gordon eq. (18.9)
Ouot =0 Continuity relation '

The first one is simply the Klein Gordon equation in momentum space. It
is however also locally true, that is, energy and momentum are allowed to
be locally different as long as the equation holds in each point. The second
equation is the continuity equation for energy /momentum or equivalently,
the charge/current density which transforms in the same way.
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18.2 Gordon decomposition of the vector current

We now precede with the Gordon decomposition of the vector current of the
Dirac equation. It splits the vector current J{j into a current related to the
charge and a current related to the spin. The vector current, normalized
as a charge/density current is.

= =y (18.10)

Where the sign of e determines the sign of the electric charge. We have
divided by mc and then multiplied by ec to go from the momentum four-
vector to the charge/current density.

We will split this current into one (J g ) which depends on the phase change
rates but which is independent of the changes of the magnitude, and an-
other (Ji) which does not depend on the phase change rates but only on
the changes (derivatives) of the magnitude.

Jv o= Jy + J (18.11)

This is done by either adding or subtracting a complex conjugate term.

6 = 21i<(a+i¢) - (a+i¢>)*>
(18.12)
a = 1 <(a+i¢) + (a+i¢)*>

We achieve this by first splitting the vector current into two equal parts.
. e [ - -
Jv = —2m< DY+ ) (18.13)

We replace ¥ in the first term above with the help of the Dirac equa-
tion, and we replace ¢ with the use of the complex conjugate of the Dirac
equation. The Dirac equation and its complex conjugate are.

Yo = mep, — iy’ 0,0 = mer) (18.14)
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The v¥ matrix is just a constant for differentiation so we can move it
through the 0, operator, we get.
ieh

Vo= —53 < PyHy”

19} o
87;/1’/ - a%fﬂ”v“w > (18.15)

These two terms now subtract if ;4 = v and they add if y # v because.
S A e ifp=v
Waro= =t if p#v (1816)

The current related to the phase change rate becomes (using 7°° = 1 and

vyt =-1)
= ieh (aww_waw ) (18.17)

2m2c Oz, Oz,

We recognize this as the expression for the charge/current density of the
Klein Gordon equation. Subsequently, the current which depends on the
magnitude changes is.

eh 0

o=
a m2c Oz?

(zZaWw) (18.18)

Where we have used the definition o#” = é (yHAY — 4¥~4#). The deriva-
tive here is acting on the whole bilinear ®Yo*”v, from which the phase
information is already eliminated.

We showed in section ?? that the bilinear 1o#*1) transforms as the elec-
tromagnetic field tensor, or equivalently, the polarization/magnetization
tensor. Indeed, when we recall Maxwell’s inhomogeneous equations in ten-
sor form. (with €,, o, and ¢ set to 1)

0 -E, -E, —E.
9 E, 0 -B. B
o= g, P = . = By 18.1
Jo = ~Ov oz» | E, B. 0 -B, (18.19)
E. -B, B, 0
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We see that the divergence of the rows does lead to a charge/current den-
sity. This means that we can define ¢o"#¢) as an electromagnetic field
tensor tensor. In the rest frame o) becomes.

o o 0 o0
7 Y| 00 5, —id
iy - rr Yy
R T 2 0 s 0 s (18.20)
0 8, —is O

Where 3§ is the unit spin vector. Thus, there is only a magnetic field in the
rest-frame. Under an arbitrary boost 3 the tensor becomes.

Jory =

0 (30087 )e —(30By )y —( 367 )
D ( 3¢ 07 )a 0 i3 +517):  —i(8) +517)y
2 (sepr )y -G M. 0 i(5) + 517)s
(80 By ). i3 +317)y —i(3+ 3817 0
_ (18.21)

The first column and row now contain the E components which correspond
to the transformed B field components. We note that the B field compo-
nents are imaginary while the E field components are real. This leads us
to define the electromagnetic field using complex numbers:

F=E+iB, o F=EG+B (18.22)

That is, we have to multiple the B fields with an extra factor ¢ in order to
obtain the correct electromagnetic tensor.
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0o -E. —E, —F,
eh - E 0 -B B
w2 v — x : z 2y
F mwa 0 5, o _B (18.23)
E. -B, B, 0

This expression corresponds with the usual inhomogeneous Maxwell equa-
tions given in SI by.

- 1 ~ E

p = € V-E, ja:@VXB —eogt (18.24)
- . D

p = V-D, Ja = VxH — %t (18.25)
- ~ P

p = V-P, Ja = VxM — g—t (18.26)

Using either the E and B fields or the D and H fields. We will however use
the polarization vector P and the magnetization vector M as the physical
interpretation, where the spin is considered to give rise to the magneti-
zation of the wave function. M is strictly zero outside the wave-function
unlike H and B.

18.3 Effective spin-current around the wave-packet

Figure 18.1 shows the axial current of a Gaussian like shaped wave packet
at the left and the corresponding effective current at the right. Recalling
Stokes law we see the correspondence between the two.

In the center, the axial circular currents cancel each other out. At the
edge, where there is a gradient, an effective current arises as a result. This
effect also occurs in magnetic media where an effective current occurs due
to the change in magnetization. j =VxM

The quantity 1pc”#1) is therefor best interpreted as the (relativistically
transformed) magnetization of the electron’s wave-function. Note that
o¥Mp is zero if there is no local charge density since it is proportional to
the absolute square of the amplitude of the wave function.
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These insights are due to Belinfante [?] (1939), JJ.Sakurai [?] (1967) and
H.Ohanian [?] (1986).
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Figure 18.1: Axial and effective current density of a Gaussian packet

From equation (18.20) we see that, in the rest-frame, the axial current
Jh = Yy is proportional to the magnetization components of the tensor
field ¥o"#1). The two however transform differently under a boost.

Total magnetic moment: [ = /I\/I s = ;/Fx;dS (18.27)

We can interpret the left side of figure 18.1 as the magnetization field M
and the right side as the effective current j=V x M. (In the rest-frame).
The total magnetic moment i can be derived from both as shown.
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18.4 Charge/magnetic-moment ratio of leptons

The table shows the mass/spin ratios and the charge/magnetic-moment
ratios for the three leptons. The electron, the muon and the tau-lepton.
The ratios for the electron are normalized as 1:1.

These ratios are explained by the Gordon decomposition of the Dirac vector
field, except for the small magnetic moment anomaly terms caused by
interaction with virtual particle pairs.

The ratios correspond to the difference between the two currents jg and

j&. The first current does depend on the phase change rates while the
second current doesn’t.

leptons: ELECTRON MUON TAU

Spin z-component | 1/2 h 1/2 h 1/2 h

Mass in MeV 0.510998918 105.6583692 1776.99

Mass ratio 1.000000000 206.7682838 3477.48
Charge 1.0 1.0 1.0

Magnetic moment | 0.928476412e-23 4.49044799¢-26 | 2.6700053e-27
Mag.moment ratio | 1.00000000000000 | 1/206.7669894 | 1/3477.43
Magnetic anomaly | 1.00115965218085 | 1.00116592080 | 1.00117324!

jg corresponds with the energy /momentum vector as well as the charge/
current density vector, both transform in the same way.

Being dependent on the phase change rate of the wave functions means
that they are larger by a factor proportional to the mass in the rest frame
compared to the quantities which correspond to j4: The spin and the
magnetic moment density.

Ltheoretical value from QED and QFT
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18.5 Gordon decomposition of the axial current

Similar to the Gordon decomposition of the vector current, we will now
handle the Gordon decomposition of the axial. current. The axial current
is given by.

. e -
ja = — vy (18.28)
m

Where the sign of e determines the sign of the charge. We will again split
this current into one (ja4) which depends on the phase change rates but
which is independent of the changes of the magnitude, and another (jaq)
which does not depend on the phase change rates but only on the changes
(derivatives) of the magnitude.

JA = JA¢ T JAa (18.29)

The first step is to split the axial current into two equal parts,

4 = w(&vﬂ,}ﬁw + hrytyBep ) (18.30)

2m

and then to replace replace ¢ in the first term above with the help of
the Dirac equation and to replace ¢ with the use of the complex conju-
gate of the Dirac equation. The gamma matrices are just a constants for
differentiation so we can move them through the 0, operator, we get.

. eh . A o
- HUADV o Vo aD 18.31
ja 2m26< Ul e axy777¢> (18.31)

These two terms now add if ;4 = v and they subtract if p # v because.

VAT = if =
,.y,u,.yf),yu — 71/,7“75 if [ 7& v (1832)

The signs are exactly the opposite of what they are in the case of the
Gordon decomposition of the vector current, due to the way 7° operates.
Now, the current which does only depend on the phase change rates and
not on the magnitude change rates becomes.
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jap = % <1/30“5”¢}> D, (18.33)

Where 0" is the dual tensor of o* and p, represents the phase change
rates. Note that p, is covariant now p, = ( pt, —p®, —p¥, —p® ) while it is
contravariant in case of the vector current where the spatial components
obtained an extra minus sign because of v'y* = —1 while v97° = 1

The part of the axial current which depends only on the changes of the
magnitude and not on the phase change rates is.

jAa = ch a(%%) (18.34)

2m2c Oz,

Where vy°1) is zero under quite general conditions for a free electron.
This leaves as ja4 as the basic contributor to the axial current j,. We
have defined the dual tensor o#*" as.

o = %[7“75,7” ], with [4#9°, 4] = (v9°7" = 7"4"°) (18.35)

or, written out in full for your convenience:

[0 0 —io® 0 —ioY 0 [ —ic® 0 ]
i 0 0 0 —i0°* 0 —i0Y i 0 —10% |
[ o 0 ][ o0 0o ][ o 0o 1 [ —-ov 0 ]
| 0 ond 1L 0 0 11 0 —0o* 11 0 oY |
[ ioY 0 ] [ -0 o ][ o 0 [ o® 0 ]
i 0 0¥ 11 0 o* 11 0 0 i 0 —o® |

ic> 0 ] [ oV 0 1 [ —-o" 0 0 0 ]

0 ic* | | 0 —o¥ | | O x |0 0 |
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The bilinear field 1) o#¥ 1 relates to the bilinear field ¢ 5" 1) in the same
way as the electromagnetic field tensor F relates to its dual, that is, the
relationship,

Fory e Gy

is equivalent to the relationship between F*Y and *FHY:

JA¢

0 —E,
E, 0
E, B.
E, —B,
I

o
. (&
=

ny

_Bz
0
B,

cM,
cM,
cM,

T IT T <
<8

n

FH

=

Do me
< 8

I3

0 P. - P,
— P, 0 P,

P, —P, 0
“H, —H, —H.

0 D. -D,
— D, 0 D,

D, —D, 0

¢’ paBy pua g

= e

jA(b = —F" jy +

—B,

fo

-E, 0

AO
_A®
—AY
_A?

(18.37)

[
RESNCRS

(18.38)

(18.39)

(18.40)

(18.41)

(18.42)

We recognize this as the expression for the charge/current density of the
Klein Gordon equation. Subsequently, the current which depends on the
magnitude changes is.
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(18.43)



