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22.1 The relativistic Hamiltonian and Lagrangian

The Hamiltonian and Lagrangian which are rather abstract constructions
in classical mechanics get a very simple interpretation in relativistic quan-
tum mechanics. Both are proportional to the number of phase changes per
unit of time. The Hamiltonian runs over the time axis while the Lagrangian
runs over the trajectory of the moving particle, the t’-axis.

Figure 22.1: The Hamiltonian and Lagrangian

Figure 22.1 shows the relativistic de Broglie wave in a Minkowski dia-
gram. The triangle represents the relation between the Lagrangian an the
Hamiltonian, which holds in both relativistic and non-relativistic physics.

L = pv − H (22.1)

The Hamiltonian counts the phase-changes per unit of time on the vertical
axis while the term pv counts the phase-changes per unit on the horizontal
axis: v is the distance traveled per unit of time while p is proportional
with the phase-changes per unit of distance, hence the term pv. We can
now understand the classical relation. (with q̇ = ẋ = v)

∂L

∂q̇
= p (22.2)
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For the free classical relativistic particle we have for the Hamiltonian (En-
ergy) and the pv term.

H =
mc2√
1− v2

c2

, pv =
mv2√
1− v2

c2

(22.3)

Calculating the Lagrangian we see that the Hamiltonian is proportional to
γ while the Lagrangian is proportional to 1/γ.

L = −(H − pv) = − c2 − v2√
1− v2

c2

m = −
√

1− v2

c2
mc2 (22.4)

This is what we expect from time dilation. The moving particle has less
clock-ticks by a factor γ due to the time dilation, We now check that.

∂L

∂q̇
=

∂

∂v

{
−

√
1− v2

c2
mc2

}
=

mv√
1− v2

c2

= p (22.5)

For sofar we have not yet discussed the potential energy. To obtain the
equation of motion of a relativistic particle in a potential field we have to
add the potential energy term V (q). In the non-relativistic case we have.

H = T (q̇) + V (q), L = T (q̇)− V (q) (22.6)

Where T (q̇) = 1
2mv

2 is the kinetic energy. The relativistic Hamiltonian
and Lagrangian we have discussed however also include the restmass en-
ergy. The restmass energy can be considered as being part of the potential
energy. The kinetic part T in the relativistic case can be obtained as
follows.

H + L = 2T = pv ⇒

T =
1
2
pv =

1
2

mv2√
1− v2

c2

≈ 1
2
mv2 ( for v � c ) (22.7)

Using the term L = 1
2mv

2 in eq. (22.5) gives us p = mv for the non-
relativistic momentum
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22.2 Principle of least action / least proper time

To obtain the relativistic equation of motion of a particle in a potential field
we use Lagrange equation of motion derived from Hamilton’s variational
principle of Least Action. Relativistic quantum mechanics gives us the
deeper perspective of this principle which now becomes the principle of
least phase-change and thus the least proper time: The relativistic particle
follows the path which will bring it there in the shortest proper time.

We will briefly recall the derivation here, it is one of the most fundamental
principles of physics. Somewhat abstract we can write.

δS = δ

∫ t2

t1

L(q, q̇) dt = 0 (22.8)

Where δS is the variation of the action, the variation of the proper time
in quantum mechanics, is zero, meaning that we have a minimum or max-
imum just like the a zero first order derivative of a function indicates a
local minimum or maximum. The particle traverses a path between two
fixed points x1 and x2 between t1 and t2 which are also fixed. We assume
that the Lagrangian only depends on the position q of the particle and its
velocity q̇. Now we allow small arbitrary variations in q and q̇ along the
path.

δS =
∫ t2

t1

(
∂L

∂q
δq +

∂L

∂q̇
δq̇

)
dt = 0 (22.9)

As long as these variations are small we can determine the change in L
with the help of the first order derivatives. The last term above is also
the last term in the expression below according to the product rule for
differentiation.

d

dt

{
∂L

∂q̇
δq

}
=

d

dt

{
∂L

∂q̇

}
δq +

∂L

∂q̇

d

dt

{
δq

}
(22.10)

We can instantly integrate the left hand term which gives us the following.

δS =
∫ t2

t1

(
∂L

∂q
− d

dt

{
∂L

∂q̇

})
δq dt +

∣∣∣∣ ∂L∂q̇ δq

∣∣∣∣t2
t1

= 0 (22.11)
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The integrated term at the end vanishes since δq is defined as zero at the
end-points. Since δq is arbitrary along the rest of the path we have to set
the term between brackets to zero. This then gives us the Euler-Lagrange
equation.

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= 0 (22.12)

It defines a local minimum at each point along the path. We can use
the metaphor of a ball rolling at the bottom of a valley. Inserting the
Lagrangian of the classical relativistic particle.

L = −
√

1− v2

c2
mc2 − V (q) (22.13)

Gives us the equation of motion of the relativistic particle in a potential
field.

dp

dt
= −dV

dq
, with p =

mv√
1− v2/c2

(22.14)

A gradient of the potential field causes a change in the relativistic momen-
tum: If we use the non-relativistic Lagrangian with,

L ≈ 1
2
mv2 − V (q) (22.15)

then we get the non-relativistic equation of motion.

ma = −dV
dq

(22.16)

As long as the derivation is correct for the relativistic particle, then we can
be assured that it is valid for the non-relativistic limit as well.
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22.3 The Hamiltonian and Lagrangian density

We can define the Hamiltonian and Lagrangian density for any extended
object, being either classical or a quantum field, as.

H =
∫
H dx3, L =

∫
L dx3 (22.17)

Let us see how these quantities transform under Lorentz transformation.
We did see in (22.3) and (22.4) that the integrated quantities, the Hamil-
tonian H, the Lagrangian L and the term pv transform like.

H transforms as γ
pv transforms as β2γ
L transforms as 1/γ

(22.18)

The volume of a wave-functions transforms like 1/γ due to Lorentz con-
traction. So, the densities become higher by a factor γ, hence the density
H, the Lagrangian density L and the density of the pv term transform like.

H transforms as γ2

PV transforms as β2γ2

L transforms as ”1”
(22.19)

We see that the Lagrangian density is the same in all reference frames.
It is a Lorentz scalar. This makes the Lagrangian density a fundamental
quantity in quantum field theory. The Standard Model of physics is based
on the Lagrangian density which in quantum physics is generally called
just the Lagrangian, without the density.

The ”equations of motion” are based on the derivatives of the Lagrangian
density which is a Lorentz scalar. Done in the right way assures that the
whole Standard Model of physics transforms in the right way, that is, the
laws of physics are the same in every reference frame.

The triangular equation H − pv = −L basically counts phase change
”clock-pulses” on the t, x and t′-axis. The corresponding relation of the
densities transforms like the basic energy/momentum relation.

H − PV = −L transforms as E2 − p2 = m2 (22.20)
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22.4 The Euler-Lagrange equation for Fields

The Euler-Lagrange equation for fields operates on a lagrangian which
depends only on the (generalized) coordinate q and velocity q̇ of the par-
ticle. It is valid for relativistic particles even though it was developed by
Leonhard Euler and Joseph-Louis Lagrange in the 1750’s.

L ≡ L(q, q̇) (22.21)

In quantum field theory we do not have a quantity like q explicitly available.
We work with a field ψ(t, r) instead. We assume that the Lagrangian
density only depends on ψ(t, r) and its first order derivatives.

L ≡ L(ψ, ∂tψ, ∂xψ, ∂yψ, ∂zψ) (22.22)

We will avoid in this book the widespread custom to present the correct
relativistic Lagrangian density for the (scalar) Klein Gordon field and then
justify it by making substitutions like.

q ← ψ,
1
2
mv2 ← 1

2
ψ̇2 (22.23)

The term 1
2mv

2 should worry the reader. Indeed the Hamiltonian density
subsequently derived does transform in the wrong way and its integral over
space does not correspond with the Hamiltonian of the classical relativistic
particle.

The origin of these substitutions can be understood by looking at our
initial mechanical spring-mass model of the Klein Gordon equation shown
in figure ??. In this model ψ is a displacement which could be associated
with q. These substitutions however are to naive, worse, they lead to
violations of special relativity.

Rather then trying to make associations between classical and field terms
we want to stress the fact that the Euler-Lagrange mechanism to derive the
equations of motion is an entirely mathematical mechanism to find a min-
imum/maximum. It does not matter by what quantities the Lagrangian
density is expressed as long as they express the right one.

The Euler-Lagrange equation for quantum fields goes well beyond the
scalar Klein Gordon field. It holds for all quantum fields fields. The
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derivation is the same as the derivation for the classical one. We will
follow the same four steps as in equations (22.9) through (22.13) for the
classical wave equation. The variation of the action is symbolized by.

δS = δ

∫ t2

t1

dt

∫ +∞

−∞
L(ψ, ∂tψ, ∂xψ, ∂yψ, ∂zψ) dx3 = 0 (22.24)

More concretely we can write it expressed in variations of the field ψ and
its (four) derivatives.

δS =
∫ t2

t1

(
∂L
∂ψ

δψ +
∂L

∂(∂µψ)
δ∂µψ)

)
dx4 = 0 (22.25)

The last term above is equal to the last term in the equation below which
just expresses the product rule for differentiation. In fact there are four
terms in total, one for each derivative.

∂

∂µ

{
∂L

∂(∂µψ)
δψ

}
=

∂

∂µ

{
∂L

∂(∂µψ)

}
δψ +

∂L
∂(∂µψ)

∂

∂µ

{
δψ

}
(22.26)

The left hand term above (representing four terms) can be directly inte-
grated over one axis, each of the four along its own axis. The result of
these integrations is zero since the variations at the end points are defined
as zero. So, we can omit the integration over the other three axis and con-
tinue with the remaining terms which are all proportional to the variation
of ψ itself.

δS =
∫ t2

t1

(
∂L
∂ψ
− ∂

∂µ

{
∂L

∂(∂µψ)

})
δψ dx4 = 0 (22.27)

Since δψ is totally arbitrary we conclude that the equation between brack-
ets has to hold at each point (This means we have nothing to do anymore
with where the borders are in which reference frame). We have obtained
the Euler Lagrange equation for the relativistic Lagrangian density:

∂

∂µ

(
∂L

∂(∂µψ)

)
− ∂L

∂ψ
= 0 (22.28)
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22.5 Lagrangian of the scalar Klein Gordon field

The form of the Hamiltonian and Lagrangian densities of the Klein Gordon
field are determined by the fact the Klein Gordon field is a scalar field. This
means that the values of the field ψ are Lorentz invariant. They are the
same in any reference frame.

If we perform a Lorentz transform on the field like ψ′(xµ) = Λψ(xµ) then
is suffices to transform the coordinates xµ to obtain ψ′(xµ)

ψ′(xµ) = Λψ(xµ) = ψ(Λ−1xµ) (22.29)

We did see that the Hamiltonian density transforms as E2, while the kinetic
(density) term T transforms like p2, see (22.20). Since the scalar field ψ
itself doesn’t transform we might expect differential operators which obtain
E2 and p2 from the quantum field instead. We will see that this is indeed
the case.

In the classical non relativistic theory the Lagrangian is given by L = T−V .
In case of a relativistic free particle there is no potential energy, however
there is the energy corresponding with the mass of the particle. This ’self-
energy’ term, which plays a somewhat similar role as the potential energy,
is absent in the non-relativistic theory.

We did see that the kinetic term T becomes 1
2pv in the relativistic case.

We want to write the relativistic case in a form of L = T −W , where W
relates to the mass-energy. Using the generally valid L = pv −H we can
rewrite L like:

L = − 1
2
H +

1
2
pv +

1
2
L (22.30)

For a classical relativistic particle we should substitute the right hand
terms as follows (see section 22.1)

L = − 1
2
γmc2 +

1
2
γmv2 − 1

2
γ−1mc2 (22.31)

Going from the Lagrangian to the Lagrangian density we have to multiply
the right hand terms with and extra factor γ to compensate for Lorentz
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contraction which confines the wave-function into a smaller volume, hence
the density goes up by a factor γ. At this point we will also multiply all
right hand terms with the constant mc2 for convenance. We will see why.
So, all the right hand terms are multiplied by γmc2 when going from the
lagrangian L to the Lagrangian density L.

L = − 1
2

[
γmc2

]2 +
1
2

[γmv]2 c2 − 1
2

[
mc2

]2 (22.32)

The terms between square brackets we recognize as E, p and the rest-mass
energy. We can now make the step from the classical relativistic particle
to the Klein Gordon field theory:

L =
1
2

[
~
∂ψ

∂t

]2
− 1

2

[
~
∂ψ

∂xi

]2
c2 − 1

2

[
mc2 ψ

]2
(22.33)

Setting (c = ~ = 1) gives us the familiar form of the Lagrangian density of
the Klein Gordon field.

L =
1
2
ψ̇2 − 1

2
∇ψ · ∇ψ − 1

2
m2ψ2 (22.34)

Note that the middle term at the right hand side corresponds with the
classical kinetic term T which becomes the kinetic energy in the non rel-
ativistic theory of the classical particle. We have derived the Lagrangian
density for the scalar field. By assuming that ψ is a Lorentz scalar we
obtained the above Lagrangian density. We now use the Euler Lagrange
equation.

∂

∂µ

(
∂L

∂(∂µψ)

)
− ∂L

∂ψ
= 0 (22.35)

In order to obtain the equation of motion. What we get is the Klein Gordon
equation.

∂2ψ

∂t2
− ∂2ψ

∂x2
i

+m2ψ = 0 (22.36)

The scalar quantum field representation derived directly from the classical
relativistic particle Lagrangian.
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22.6 Hamiltonian of the scalar Klein Gordon field

For the Hamiltonian density we go back to the expression for the classical
relativistic particle since we want both Hamiltonians to correspond. Using
equation (22.32) and H = 2T − L we get for the Hamiltonian density of
the classical particle.

H =
1
2

[
γmc2

]2 +
1
2

[γmv]2 c2 +
1
2

[
mc2

]2 (22.37)

This corresponds with the following Hamiltonian density for the Klein
Gordon equation.

H = − 1
2
ψ̇2 − 1

2
∇ψ · ∇ψ +

1
2
m2ψ2 (22.38)

With (c = ~ = 1). We can see how this Hamiltonian density transforms
by applying it to a plane-wave of the form exp(−iEt+ ipx). We get:

H ∝ E2 + p2 +m2 ∝ γ2 + β2γ2 + 1 ∝ γ2 (22.39)

Thus: the Hamiltonian density transforms like γ2 where one factor γ stems
from the Hamiltonian being the 0’th component of the 4-momentum and
the second factor γ comes from the Lorentz contraction of the volume
which confines the field.

This Hamiltonian density corresponds with the classical particle but differs
in signs with the second quantization related Hamiltonian density1

1The Hamiltonian related with the second quantization of the Klein Gordon field
is given by H = 1

2
ψ̇2 + 1

2
( ∇ψ )2 + 1

2
m2ψ2. The reason of the difference in signs

is that the term ψ̇ is considered as the momentum in an ”internal” or ”unspecified”
space. The term 1

2
ψ̇2 is then considered to be the T in H = 2T − L. The general

problem in applying second order quantization in the relativistic theory is that the mix
of ”internal” or ”unspecified” space and the usual space-time coordinates doesn’t lead
to the correct Lorentz transformation. A second problem is that 1

2
ψ̇2 corresponds to the

non-relativistic expression 1
2
mv2 instead of the relativistic version 1

2
pv
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22.7 The complex Klein Gordon field

The complex Klein Gordon equation comes in when we need to describe
both particles and anti-particles. ψ becomes a field with two components
ψ1 and ψ2.

ψ = ψ1 + iψ2 (22.40)

How can we interpret these components. One possibility is to take one
component as a position (in some ”internal” or ”unspecified” space and
the other component as the momentum. The two would be 90o out of
phase in an oscillatory motion which we could associate with the particle’s
frequency exp(−iEt/~)

Another way is to interpret both as coordinates on a plane of rotation. The
expression exp(−iEt/~) would then correspond with a circular motion2.

The Lagrangian for the complex field must contain both components and
the Euler-Lagrange equation must lead to the usual Klein Gordon equation.
Say we us the Lagrangian of the real Klein Gordon equation,

L =
1
2
ψ̇2 − 1

2
∇ψ · ∇ψ − 1

2
m2ψ2 (22.41)

and simply use ψ as a complex variable. Evaluating this with a plane wave
solution however doesn’t produce a real value. L contains the local phase
of the wave-function, its not a real value.

L =
(
− 1

2
E2 +

1
2
p2 − 1

2
m2

)
ψ2 = −m2ψ2 (22.42)

The result we want is −m2|ψ|2 or −m2ψ∗ψ which more explicitly expressed
in its individual components is −m2

(
ψ2 + ψ2

)
without the imaginary val-

ued cross-term −2im2ψ1ψ2 included in m2ψ2. We get the Lagrangian
density we want by simply adding the two Lagrangians of the individual
components together. The same can be done for the Hamiltonian.

2Both interpretations lead to a specific direction in space, either the direction of
oscillation or the spin pointer. This is an issue for a scalar theory such as the one
represented by the scalar Klein Gordon equation, which is not supposed to have any
special direction in space
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Lagrangian density for the complex scalar field ψ1 + iψ2

L =


+

(
1
2 ψ̇

2
1 − 1

2∇ψ1 · ∇ψ1 − 1
2 m

2ψ2
1

)
+

(
1
2 ψ̇

2
2 − 1

2∇ψ2 · ∇ψ2 − 1
2 m

2ψ2
2

) (22.43)

L =
1
2

(
− ψ̇∗ψ̇ + ∇ψ∗ · ∇ψ − m2ψ∗ψ

)
(22.44)

Hamiltonian density for the complex scalar field ψ1 + iψ2

H =


+

(
− 1

2 ψ̇
2
1 − 1

2∇ψ1 · ∇ψ1 + 1
2 m

2ψ2
1

)
+

(
− 1

2 ψ̇
2
2 − 1

2∇ψ2 · ∇ψ2 + 1
2 m

2ψ2
2

) (22.45)

H(x) =
1
2

(
ψ̇∗ψ̇ + ∇ψ∗ · ∇ψ + m2ψ∗ψ

)
(22.46)

Some care is required with the signs here since ψ̇∗ψ̇ = −(ψ̇2
1+ψ̇

2
2). Equation

(22.44) is often found with reversed signs. One can easily check the required
signs by inserting a plane-wave eigenfunction into the Lagrangian density:
ψ = ψ1 + iψ2 = cos(−Et+ px) + i sin(−Et+ px), One should get.

L =
1
2

(
− E2 + p2 −m2

)
ψ∗ψ = −m2ψ∗ψ (22.47)

The equation of motion can be derived in a mathematically proper way3 by
applying the Euler-Lagrange equation on (22.43), taking the derivatives in
the fields ψ1, ψ2 and their derivatives, and then defining the combined field
again as ψ = ψ1 + iψ2. The result is the familiar Klein Gordon equation.

∂2ψ

∂t2
− ∂2ψ

∂x2
i

= m2ψ (22.48)

3Despite what is often seen, the Euler Lagrange equation can not be applied directly
on expressions containing terms like ψ∗ψ. A derivative like ∂ψ∗/∂ψ is not zero but un-
determined since it violates the Cauchy-Riemann equations for complex differentiability:
The derivative is not independent of the direction of ∂ψ in the complex plane.
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22.8 Expressing the Lagrangian in a 4d environment

The reader may have noticed that there seems to be an ambiguity in how we
define the Lagrangian density. The expression for the Lagrangian density
we obtained is.

L =
1
2

(
− ψ̇2 +

(
∇ψ

)2 − m2ψ2
)

(22.49)

While we in fact could also have written.

L = −m2ψ2 or L = − ψ̇2 +
(
∇ψ

)2 (22.50)

Both expressions lead to the amount of phase change per unit of time per
unit of volume over the trajectory of the particle, at least for plane-waves.
Instead we end up with a linear combination of the latter two expressions.
Why? For the Hamiltonian it seems that we could equally well write.

H = ψ̇2 or H =
(
∇ψ

)2 + m2ψ2 (22.51)

To get the amount of phase change per unit of time per unit of volume
over the time-axis. Instead we ended up with.

H(x) =
1
2

(
ψ̇2 +

(
∇ψ

)2 + m2ψ2
)

(22.52)

One important argument is that we do not only want to know the La-
grangian or Hamiltonian density in one particular reference frame, but we
want to know these quantities in all reference frames. Knowing a phase
change rate in one particular space-time direction doesn’t say anything
about the other directions. We need sufficient information to be able
to transform the Lagrangian and Hamiltonian density into any reference
frame.

One might suspect that Nature itself also needs such a definition in 4d
space-time, and that therefor, even though the expressions seem to be
ambiguous from a single reference point of view, they actually do represent
the physics as required in a 4d-dimensional world obeying the rules of
special relativity.
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22.9 Electromagnetic and Proca Langrangian

In correspondence with the Lagrangian densities discussed sofar we might
expect the Lagrangian density for the electromagnetic four-vector to be
expressed by the following.

Lp =



+
(

1
2Ȧ

2
0 − 1

2∇A0 · ∇A0 − 1
2 m

2A2
0

)
−

(
1
2Ȧ

2
x − 1

2∇Ax · ∇Ax − 1
2 m

2A2
x

)
−

(
1
2Ȧ

2
y − 1

2∇Ay · ∇Ay − 1
2 m

2A2
y

)
−

(
1
2Ȧ

2
z − 1

2∇Az · ∇Az − 1
2 m

2A2
z

)
(22.53)

Where all four components of Aν have independently the form of the (clas-
sical) Lagrangian field density. The requirement that the total Lagrangian
density transforms like a Lorentz scalar imposes the (+,-,-,-) metric on the
time/space components, the signs in the first column of (22.53). These
expressions can be written more compact as:

Lp =
1
2
∂µAν ∂µAν −

1
2
m2c2AνAν (22.54)

If the massm is not zero then we call the field a Proca field. This expression
is however not complete. We have to replace the derivatives of Aµ in the
following sense. (We’ll discuss the reason for this in a minute)

∂µAν =⇒ ∂µAν − ∂νAµ, ∂µAν =⇒ ∂µAν − ∂νAµ (22.55)

So the Lagrangian density becomes. (in the massless case)

L =
1
2

(∂µAν − ∂νAµ) (∂µAν − ∂νAµ) = FµνFµν (22.56)

Which we can write (using the normalization in SI) as.
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L =
1
4µ

FµνFµν =
1
2

(
BH - DE

)
(22.57)

This Lagrangian density is zero in case of electromagnetic radiation where
the relation |E| = |cB| holds always. This shows us that the invariant
photon mass is zero. (The partial Lagrangian density (22.54) is zero as
well in this case)

Now, why do we need to subtract these extra terms? Well typically the
energy-momentum of the electromagnetic field is derived by calculating
how the field acts on charges on a capacitor and currents in an inductor,
so charge is involved in one way or the other and charge is represented by
an U(1) symmetry: exp(iφ).

The terms we need to subtract induce an equal and indistinguishable U(1)
phase as the regular Lagrangian components and therefor need to be taken
care of. The total induced phase φ on a charged scalar field ψ by the four-
vector Aµ is defined in the following way.

ψ = exp

[
− i

~

∫
(po + eAo)dxo +

i

~

3∑
i=1

∫
(pi + eAi)dxi

]
(22.58)

Where p is the inertial momentum defined by the invariant mass. We can
split of the factor dependent on Aµ as follows ψ = ψ p ψA. Since ψ is a
scalar we can write ∂µ∂νψ = ∂ν∂µψ, the order of the differential operators
does not matter.

The combination (pµ + eAµ) must be curl free in any of the six 2D planes
of 4D space-time otherwise ψ otherwise the expression within the square
brackets can not be a single valued scalar function.∮

(pµ + eAµ) ds = 0 (22.59)

The individual terms pµ and eAµ can have curl, so any curl in eAµ must
be canceled by an opposite curl in pµ. This relationship gives rise to
the electromagnetic Lorentz Force. The expression i~ ∂µ∂νψp yields the
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changes of the momenta pν in the directions xµ. All of these terms end up
in the expression which describes the change of momentum of a particle
moving at some speed v since.

dpµ

dt
=

∂pµ

∂t
+

∂pµ

∂x
vx +

∂pµ

∂y
vy +

∂pµ

∂z
vz (22.60)

Where the right hand side is just the mathematical expansion of the left
hand side (vx = ∂x/∂t, et-cetera ) It is no surprise that the expression
∂µ∂νψA gives rise to the terms which end up in the electromagnetic field
tensor Fµν which yields the changing momentum.

dpµ

dt
= e

(
∂µAν − ∂νAµ

)
vν = eFµν vν (22.61)

Where the term between brackets represents the curl of Aµ. Since the
order of differentiation is irrelevant we can deduce.

∂µ∂νψ = ∂ν∂µψ =⇒ ∂µ (pν + eAν) = ∂ν (pµ + eAµ) (22.62)

The righthand side can be reordered as.

∂µpν − ∂νpµ = − e ( ∂µAν − ∂νAµ ) (22.63)

This expression simplifies for a particle with ~v = 0, and thus ~p = 0 (at
every point in space) to.

∂pi

∂xo
= − e ∂A

i

∂xo
− e

∂νAo

∂xi
= eE (22.64)

Which is just the electric part of the Lorentz force. A non-zero velocity
~v, constant over space, gives rise to the full Lorentz force including the
magnetic terms.

We see that the assumption that somehow charge is involved in the La-
grangian leads to extra terms which are indistinguishable from the basic
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terms because of the U(1) symmetry. Certainly a term like 1
2DE suggests

likewise. It is the energy needed for the vacuum displacement current D
to move through the electric field E which builds up in the process as a
result.

22.10 The electromagnetic equation of motion

We can derive the equations of motion with the use of the Euler Lagrange
equation starting from the Lagrangian density.

L =
1

4µo

(
∂µAν−∂νAµ

)(
∂µAν−∂νAµ

)
=

1
2µo

(
B2− 1

c2
E2

)
(22.65)

Multiplying the terms and realizing that µa nd ν are dummy variables to
add all terms together to a single scalar result, we can rewrite this in the
form which is generally used to derive the equations of motion.

L =
1

2µo

(
∂µAν ∂

µAν − ∂µAν ∂
νAµ

)
(22.66)

The first of the two terms is identical to the initial Lagrangian density
(22.53) while the second term corresponds to the extra terms. We recall
the Euler Lagrange equation.

∂

∂µ

(
∂L

∂(∂µAν)

)
− ∂L

∂Aν
= 0 (22.67)

Applying it gives us the equation of motion.

∂µ∂
µAν − ∂ν∂µA

µ = 0 (22.68)

The term ∂µA
µ is zero if Aµ is a conserved current. We see that the

equation of motion is not changed by the extra terms if this is the case. In
case of a vacuum without net charge-current density we obtain.

∂µ∂
µAν = 0 (22.69)
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22.11 The electromagnetic interaction Lagrangian

The electromagnetic interaction Lagrangian density represents the extra
phase change rates induced by the four-potential Aµ on a charged (Klein
Gordon) field ψ. It is given by.

Lint = jν A
ν (22.70)

Which transforms as it should like a Lorentz scalar. This gives us for the
total equation of motion.

∂µ∂
µAν − ∂ν∂µA

µ = µoj
ν (22.71)

Which becomes under the assumption that Aµ is a conserved current
(Lorentz gauge condition).

∂µ∂
µAν = µoj

ν (22.72)

Here we recover the classical the classical wave equation of Aµ with the
charge-current density jµ as its source. We can write the equation of
motion as.

∂µ

(
∂µAν − ∂νAµ

)
= µoj

ν (22.73)

This allows us to express it with the use of Fµν instead of Aν .

∂µF
µν = µoj

ν (22.74)

Which is a compact way of writing of the inhomogeneous Maxwell equa-
tions, which we have hereby derived from the Lagrangian density.

∇ · E = cµoj
o =

1
εo
ρ (22.75)

∇× B − 1
c2
∂E

∂t
= µo

~j (22.76)
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22.12 Electromagnetic and Proca Hamiltonian

We’ll follow the same steps here as we did for the electromagnetic La-
grangian density. In correspondence with the Hamiltonian densities dis-
cussed sofar we expect the Hamiltonian density for the electromagnetic
four-vector to be expressed by the following.

Hp =



+
(
− 1

2Ȧ
2
0 − 1

2∇A0 · ∇A0 + 1
2 m

2A2
0

)
+

(
− 1

2Ȧ
2
x − 1

2∇Ax · ∇Ax + 1
2 m

2A2
x

)
+

(
− 1

2Ȧ
2
y − 1

2∇Ay · ∇Ay + 1
2 m

2A2
y

)
+

(
− 1

2Ȧ
2
z − 1

2∇Az · ∇Az + 1
2 m

2A2
z

)
(22.77)

Where all four components of Aν have independently the form of the (clas-
sical) Hamiltonian field density. These expressions can be written more
compact as:

Hp = − 1
2
∂νAµ ∂νAµ +

1
2
mc2AµAµ (22.78)

We used ∂ν instead of ∂ν here for later convenience. Both give the same
end result due to the square. This expression is again not complete. We
have to replace the derivatives of Aµ in the following sense.

∂µAν =⇒ ∂µAν − ∂νAµ, (22.79)

For the same reason as explained in the section on the Lagrangian density.
With a zero mass field normalized for SI units this leads us to the well
know expression for the energy density of the electromagnetic field.

H =
1

4µo

(
∂νAµ − ∂µAν

)(
∂νAµ − ∂µAν

)
(22.80)

H =
1

4µo
FµνFµν =

1
2

(
BH + DE

)
(22.81)


